REALISASI DAN DESAIN DINAMIKA BERJALAN NAIK DIATAS TANGGA PADA 33 DOF HUMANOID ROBOT
Abstract
This paper presents a balance control for humanoid robot for walking on the stair. Kinematics, dynamics, and control system are the complex problems for humanoid robot especially in walking through the stair. The goal of this paper is to implement the control methods for the robot to be able to walk through the stair. The complexities are influenced by the number of joint movements of 33 degree of freedom (DoF) resulting flexible movements. This movement patterns in walking on the stair considers the height and the width of the stair by using the feedback sensors and the proportional-integral (PI) controller. Walking transition from single phase to double phase is needed to conduct the smooth transition. To solve that problem, an integrated motion and controller are divided to two conditions: working motion in the offline planning and working motion in the online implementation. Vertical movement and the step-length movement are needed due to the additional movements are required for walking on the stair. That is why, PI controller is used to achieve the balance condition. Each controller is used in detail with the results of experiments and simultions. The kinematics approach for simulation has 100% successful rate and the real-time experiments have 93% of error. The effectivity and results of the proposed algorithm for humanoid robot are verified by the experiments to walk on the stair.
Keywords: dynamic, kinematic, balance control, humanoid robot
Makalah ini menyajikan kontrol keseimbangan untuk robot humanoid dalam berjalan di atas tangga. Kinematika, dinamika, dan sistem kendali merupakan masalah kompleks pada robot humanoid khususnya untuk berjalan melewati tangga. Tujuan akhir makalah ini adalah penerapan metode kontrol pada robot humanoid agar robot dapat berjalan di atas tangga. Kompleksitas pada robot dipengaruhi oleh banyaknya penggerak sebesar 33 derajat kebebasan (DoF) sehingga menghasilkan gerakan yang fleksibel. Pola gerakan ketika berjalan diatas tangga ini mempertimbangkan tinggi tangga dan lebar tangga dengan adanya umpan balik pada sensor dan system kendali keseimbangan menggunakan proporsional-integral (PI) kontroler. Transisi berjalan dari fase dukungan tunggal ke fase dukungan ganda diperlukan untuk kelancaran siklus transisi. Untuk menyelesaikan masalah tersebut, sebuah gerakan terintegrasi dan pengontrol dibagi menjadi dua kondisi: gerakan bekerja pada perencanaan offline dan pengontrol bekerja yang berjalan online. Hal ini dikarenakan kebutuhan tambahan gerakan vertikal pada tinggi tangga dan panjang langkah ketika menaiki tangga. Oleh karena itu, kontroler PI digunakan untuk mencapai kondisi keseimbangan. Setiap pengendali ditangani secara detail dengan hasil eksperimen dan simulasi. Pendekatan Kinematika untuk simulasi memiliki hasil yang baik berdasarkan percobaan simulasi 100% dan percobaan secara langsung dengan robot memiliki error 93%. Efektivitas dan kinerja dari algoritma kontrol yang diusulkan diverifikasi melalui percobaan naik tangga pada humanoid robot.
Kata kunci: dinamika, kinematika, kendali keseimbangan, robot humanoid
Full Text:
PDFReferences
Shukla, Y. M., Tamba, A., Pandey, S., & Sharma, P. (2014). A review and scope of humanoid robotics. no. March, 28-29.
Abror, Barorotul, and Dadet Pramadihanto. "Dance motion pattern planning for K. Mei as dancing humanoid robot", 2017 International Conference on Robotics, Biomimetics, and Intelligent Computational Systems (Robionetics). IEEE, 2017.
Kwon, Taesoo, and Jessica K. Hodgins. "Control Systems for Human Running using an Inverted Pendulum Model and a Reference Motion Capture Sequence", Symposium on Computer Animation, 2010.
Liu, Jing, and Oliver Urbann. "Bipedal walking with dynamic balance that involves three-dimensional upper body motion", Robotics and Autonomous Systems 77, 39-54, 2016.
Brasseur, C., Sherikov, A., Collette, C., Dimitrov, D., & Wieber, P. B. “A robust linear MPC approach to online generation of 3D biped walking motion”, In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 595-601). IEEE. 2015.
Shahrokhshahi, Ahmadreza, et al. "Optimal Stair Climbing Pattern Generation for Humanoids Using Virtual Slope and Distributed Mass Model ", Journal of Intelligent & Robotic Systems 94.1, 43-59, 2019.
Liu, Chengju, et al. "Active Balance Control of Humanoid Locomotion Based on Foot Position Compensation", Journal of Bionic Engineering 17.1, 134-147, 2020.
Caron, Stéphane, Abderrahmane Kheddar, and Olivier Tempier. "Stair climbing stabilization of the HRP-4 humanoid robot using whole-body admittance control ", 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.
?urawska, Magdalena Sylwia, Maksymilian Szumowski, and Teresa Zieli?ska. "Reconfigurable double inverted pendulum applied to the modelling of human robot motion ", Journal of Automation Mobile Robotics and Intelligent Systems 11, 2017.
Guan, Yishen, et al. "On robotic trajectory planning using polynomial interpolations", 2005 IEEE International Conference on Robotics and Biomimetics-ROBIO. IEEE, 2005.
Kim, Jung-Yup, Ill-Woo Park, and Jun-Ho Oh. "Realization of dynamic stair climbing for biped humanoid robot using force/torque sensors", Journal of Intelligent and Robotic Systems 56.4, 2009.
Jazar, Reza N. Theory of applied robotics: kinematics, dynamics, and control. Springer Science & Business Media, 2010.
Nenchev, Dragomir N., Atsushi Konno, and Teppei Tsujita. Humanoid robots: Modeling and control. Butterworth-Heinemann, 2018.
Hooshang, and Bostwick Wyman. "Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane", IEEE Transactions on Automatic Control 24.4, 526-535, 1979.
Mandava, Ravi Kumar, and Pandu Ranga Vundavilli. "Near optimal PID controllers for the biped robot while walking on uneven terrains", International Journal of Automation and Computing 15.6, : 689-706, 2018.
Liu, Chengju, Jing Ning, and Qijun Chen. "Dynamic walking control of humanoid robots combining linear inverted pendulum mode with parameter optimization", International Journal of Advanced Robotic Systems 15.1, 1729881417749672, 2018.
DOI: http://dx.doi.org/10.20527/klik.v7i3.332
Copyright (c) 2020 KLIK - KUMPULAN JURNAL ILMU KOMPUTER
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License. View My Stats