Rulisiana Widodo, Tessy Badriyah, Iwan Syarif


Lung cancer is one of the most dangerous cases with the largest number of new cases in the world. The number of Lung Cancer in Indonesia is increasing rapidly every day until it is ranks 8th position in Southeast Asia, experiencing an increase in the last five years by 10.85 percent. This study aims to build a tool to detect lung cancer using the Deep Learning classification method with the Convolutional Neural Network (CNN) Algorithm. The tools that are made can be used for consideration in detecting from the results of cytological examinations, can be classified into normal (negative) and abnormal (positive) types of cancer. The experiment was carried out by performing hyperparameter optimization. The results show that the hyperparameter optimization has superior results compared to others, using the hyperparameter Gradient Boosted Regression Tree method. Experiments without hyperparameters give an accuracy value of 97%, while with the Gaussian Process it gives 98% accuracy and with a hyperparameter gradient boosted regression tree gives 99% accuracy, which is the best accuracy.

Keywords : Lung Cancer, Cytological Examinations, Deep Learning, Convolutional Neural Network (CNN)

terbanyak di dunia. Jumlah penderita Kanker Paru di Indonesia semakin hari semakin meningkat pesat hingga menduduki urutan ke-8 di Asia Tenggara, mengalami peningkatan dalam lima tahun terakhir sebanyak 10.85 persen. Penelitian ini bertujuan untuk membangun alat pendeteksi kanker paru menggunakan metode klasifikasi Deep Learning dengan Algoritma Convolutional Neural Network (CNN). Alat yang dibuat dapat digunakan sebagai pertimbangan dalam mendeteksi Kanker Paru dari hasil pemeriksaan sitologi, diklasifikasikan menjadi jenis normal (negatif) dan abnormal (positif) kanker. Percobaan dilakukan dengan melakukan optimasi hyperparameter. Hasil penelitian menunjukkan bahwa optimasi hyperparameter memiliki hasil yang lebih unggul yaitu dengan menggunakan metode hyperparameter Gradient Boosted Regression Tree. Percobaan tanpa hyperparameter memberikan nilai akurasi 97%, sedangkan dengan Gaussian Process memberikan akurasi 98% dan dengan hyperparameter Gradient Boosted Regression Tree memberikan akurasi terbaik yaitu 99%.

Kata Kunci : Kanker Paru, Pemeriksaan Sitologi, Deep Learning, Convolutional Neural Network (CNN)

Full Text:



Kancherla and Mukamalla, “Early Lung Cancer Detection using Nucleus Segementation based Features,” IEEE Symp. Comput. Intell. Bioinforma. Comput. Biol., pp. 91–95, 2013.

A. C. Society, “About Lung Cancer What Is Lung Cancer ?,” 2012. [Online]. Available:

Redaksi WE Online, “Global Burden Cancer 2018: Kasus Kanker Paru-paru Indonesia Ada di Zona Serius,” 2019. [Online]. Available: [Accessed: 10-Jun-2020].

Badan penelitian dan Pengembangan Kesehatan, HASIL UTAMA RISKESDAS 2018. Jakarta: Lembaga Penerbit Balitbangkes, 2018.

Komite penanggulangan kanker nasional, Panduan Penatalaksanaan Kanker Paru. Jakarta: Lembaga Penerbit Kemenkes RI, 2018.

F. Taher, N. Werghi, and H. Al-Ahmad, “Bayesian Classification and Artificial Neural Network Methods for Lung Cancer Early Diagnosis,” IEEE Int. Conf. Electron. Circuits, Syst. (ICECS 2012), pp. 773–776, 2012.

R. G.Naghdy, C. Todd, and E. Norahmawati, “Cervical Cancer Classification Using Gabor Filters,” IEEE First Int. Conf. Healthc. Informatics, Imaging Syst. Biol., pp. 194–198, 2011.

S. Kido, Y. Hirano, and N. Hashimoto, “Detection and Classification of Lung Abnormalities by Use of Convolutional Neural Network ( CNN ) and Regions with CNN Features ( R-CNN ),” Int. Work. Adv. Image Technol., pp. 1–4, 2018.

Journal medical, “What Is a Fine Needle Aspiration (FNA) Biopsy for Lung Cancer?,” 2020. [Online]. Available: [Accessed: 09-Oct-2020].

A. B. Frca, “Pleural fluid collections in critically ill patients,” Contin. Educ. Anaesth. Crit. Care Pain, vol. 7, no. 1, pp. 10–14, 2007.

A. Miko?ajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” Int. Interdiscip. PhD Work., no. August 2019, 2018.

W. Dong, “Fast Multi-Operator Image Resizing and Evaluation Fast Multi-Operator Image Resizing and Evaluation,” no. December 2013, 2012.

M. Tan and Q. V Le, “EfficientNet : Rethinking Model Scaling for Convolutional Neural Networks,” 2019.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.joomla
counter View My Stats