OPTIMASI FUNGSI KEANGGOTAAN FIS TSUKAMOTO MENGGUNAKAN SIMULATED ANNEALING UNTUK IDENTIFIKASI PENYAKIT GIGI
Abstract
Teeth are one of the tools in the framework related to the human stomach which fills as a food destroyer for simple processing. Diseases that attack teeth can withstand this action and cannot be distinguished quickly by young dental specialists. This problem can be solved by methods in the field of technology. The algorithm that can be used is FIS Tsukamoto in classification. Optimization of the membership function at FIS Tsukamoto is needed to improve accuracy. Optimization of FIS Tsukamoto membership function using Simulated Annealing produced the highest accuracy at 92.5% of the 100 test data.
Keywords: Simulated Annealing; FIS Tsukamoto, Dental Disease, Optimization
Gigi adalah salah satu alat dalam kerangka terkait perut manusia yang mengisi sebagai penghancur makanan untuk pemrosesan sederhana. Penyakit yang menyerang gigi dapat menahan tindakan ini dan tidak dapat dibedakan dengan cepat oleh dokter muda spesialis gigi. Masalah ini dapat diselesaikan dengan metode di bidang teknologi. Algoritma yang bisa digunakan yaitu FIS Tsukamoto dalam melakukan klasifikasi. Optimasi fungsi keanggotaan pada FIS Tsukamoto diperlukan untuk meningkatkan akurasi. Optimasi fungsi keanggotaan FIS Tsukamoto menggunakan Simulated Annealing menghasilkan akurasi paling tinggi yaitu 92,5% dari 100 data uji.
Kata kunci: Simulated Annealing; FIS Tsukamoto, Penyakit Gigi, Optimisasi
Full Text:
PDFReferences
R. A. Priyono and K. Surendro, “Nutritional Needs Recommendation Based on Fuzzy Logic,” Procedia Technol., vol. 11, no. Iceei, pp. 1244–1251, 2013.
M. Asadi, “Journal of Rock Mechanics and Geotechnical Engineering Optimized Mamdani fuzzy models for predicting the strength of intact rocks and anisotropic rock masses,” J. Rock Mech. Geotech. Eng., vol. 8, no. 2, pp. 218–224, 2016.
M. R. Galankashi, S. A. Helmi, and P. Hashemzahi, “Supplier selection in automobile industry : A mixed balanced scorecard – fuzzy AHP approach,” Alexandria Eng. J., vol. 55, no. 1, pp. 93–100, 2016.
F. Latifog?lu, K. Polat, S. Kara, and S. Gu¨nes, “Medical diagnosis of atherosclerosis from Carotid Artery Doppler Signals using principal component analysis ( PCA ), k -NN based weighting pre-processing and Artificial Immune Recognition System ( AIRS ),” vol. 41, pp. 15–23, 2008.
A. M. A. K. Parewe, W. F. Mahmudy, F. Ramdani, and Y. P. Anggodo, “Dental Disease Identification Using Fuzzy Inference System,” vol. 03, no. 01, pp. 33–41, 2016.
A. M. A. K. Parewe and W. F. Mahmudy, “Detection of Dental Disease Using Hybrid Fuzzy Logic and Evolution Strategies,” in 4th International Conference on Communication and Computer Engineering (ICOCOE), 2017.
D. M. N. Fajri, T. H. Saragih, A. Hamdianah, W. F. Mahmudy, and Y. P. Anggodo, “Optimized Fuzzy Neural Network for Jatropha Curcas Plant Disease Identification,” in International Conference on Sustainable Information Engineering and Technology (SIET), Batu, Indonesia, 25-25 November, 2017.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science (80-. )., vol. 220, no. 4598, pp. 671–680, 1983.
H. H. Örkcü, “Subset Selection in Multiple Linear Regression Models: A Hybrid of Genetic and Simulated Annealing Algorithms,” Appl. Math. Comput., vol. 219, no. 23, pp. 11018–11028, 2013.
T. Sousa, T. Soares, H. Morais, R. Castro, and Z. Vale, “Simulated Annealing to Handle Energy and Ancillary Services Joint Management Considering Electric Vehicles,” Electr. Power Syst. Res., vol. 136, pp. 383–397, 2016.
S. W. Lin and V. F. Yu, “A Simulated Annealing Heuristic for the Multiconstraint Team Orienteering Problem with Multiple Time Windows,” Appl. Soft Comput., vol. 37, pp. 632–642, 2015.
S. Z. Selim and K. Alsultan, “A Simulated Annealing Algorithm for the Clustering Problem,” Pattern Recognit., vol. 24, no. 10, pp. 1003–1008, 1991.
H. Bayram and R. Sahin, “A New Simulated Annealing Approach for Travelling Salesman Problem,” Math. Comput. Appl., vol. 18, no. 3, pp. 313–322, 2013.
T. H. Saragih, W. F. Mahmudy, and Y. P. Anggodo, “Genetic algorithm for optimizing FIS Tsukamoto for dental disease identification,” 2017 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2017, vol. 2018-Janua, pp. 345–349, 2018.
D. M. N. Fajri, W. F. Mahmudy, and Y. P. Anggodo, “Optimization of FIS Tsukamoto using particle swarm optimization for dental disease identification,” 2017 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2017, vol. 2018-Janua, pp. 261–267, 2018.
T. H. Saragih, D. M. N. Fajri, and A. Rakhmandasari, “Comparative Study of Decision Tree, K-Nearest Neighbor, and Modified K-Nearest Neighbor on Jatropha Curcas Plant Disease Identification,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 5, no. 1, 2020.
T. H. Saragih, D. M. N. Fajri, A. Hamdianah, W. F. Mahmudy, and Y. P. Anggodo, “Jatropha Curcas Disease Identification Using Fuzzy Neural Network,” in International Conference on Sustainable Information Engineering and Technology (SIET), Batu, Indonesia, 25-25 November, 2017.
T. H. Saragih, D. M. N. Fajri, W. F. Mahmudy, A. L. Abadi, and Y. P. Anggodo, “Jatropha curcas disease identification with extreme learning machine,” Indones. J. Electr. Eng. Comput. Sci., vol. 12, no. 2, pp. 883–888, 2018.
T. H. Saragih, W. F. Mahmudy, A. L. Abadi, and Y. P. Anggodo, “Application of extreme learning machine and modified simulated annealing for jatropha curcas disease identification,” Int. J. Adv. Soft Comput. its Appl., vol. 10, no. 2, pp. 108–119, 2018.
K. V. Shihabudheen, M. Mahesh, and G. N. Pillai, “Particle swarm optimization based extreme learning neuro-fuzzy system for regression and classification,” Expert Syst. Appl., vol. 92, pp. 474–484, 2018.
DOI: http://dx.doi.org/10.20527/klik.v7i3.349
Copyright (c) 2020 KLIK - KUMPULAN JURNAL ILMU KOMPUTER
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License. View My Stats