Sistem Rekognisi Jenis Kendaraan Dengan Analisis Video Menggunakan Metode Yolov4

Ichsan Surya Dharma

Abstract


Traffic density on the highway, especially at intersections where there are traffic lights, is a number that can be used to estimate the number of vehicles. The increase in the density of highways is directly proportional to the growth in Indonesia's population which is increasing. The problem was found that the survey to record the types of vehicles in Indonesia was still manual by taking notes and coming directly to the location. Based on this problem, a vehicle object detection system was created, especially cars based on their brands and variants to facilitate the police survey process to detect violations that have occurred. This study uses the You Only Look Once (YOLOv4) algorithm to detect cars, and classify and determine the level of accuracy. This research uses 7034 image dataset with 8 classes, namely Motorcycle, Suzuki Ertiga, Honda Jazz, Honda Brio, Toyota Avanza, Toyota Innova, Mitsubishi Xpander, Mitsubishi Pajero Sport. The results of this study indicate that the YOLOv4 algorithm can be used on Jogja CCTV to detect vehicle types with an accuracy of 82%.

Full Text:

PDF

References


Samsir and J. H. P. Sitorus, “Perancangan Sistem Monitoring Lokasi Kendaraan Menggunakan GPS U-Blox Berbasis Android,” J. Bisantara Inform., vol. 5, no. 1, pp. 1–10, 2021.

M. Rusmin, “Analisis Kinerja Di Simpang Empat Tak Sebidang Kota Makassar Berbasis Mikrosimulasi,” vol. l, 2018, [Online]. Available: http://dx.doi.org/10.31227/osf.io/sbv73

A. A. B, A. Amin, and M. W. Kasrani, “Penerapan Metode Yolo Object Detection V1 Terhadap Proses Pendeteksian Jenis Kendaraan Di Parkiran,” J. Tek. Elektro Uniba (JTE UNIBA), vol. 6, no. 1, pp. 194–199, 2021, doi: 10.36277/jteuniba.v6i1.130.

N. Hanum Harani, C. Prianto, and M. Hasanah, “Deteksi Objek Dan Pengenalan Karakter Plat Nomor Kendaraan Indonesia Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Python,” J. Tek. Inform., vol. 11, no. 3, pp. 47–53, 2019.

F. Rachmawati and D. Widhyaestoeti, “Deteksi Jumlah Kendaraan di Jalur SSA Kota Bogor Menggunakan Algoritma Deep Learning YOLO,” pp. 360–370.

M. H. Yusfina, C. Setianingsih, and R. Astuti, “Deteksi Pelanggaran Parkir Pada Bahu Jalan Tol Dengan Intelligent Transportation System Menggunakan Algoritma Yolo ( Parking Violation Detection On The Roadside Of Toll Roads With Intelligent Transportation System Using Yolo Algorithm ),” e-Proceeding Eng., vol. 9, no. 3, pp. 1064–1069, 2022.

R. M. Taufiq, Sunanto, Y. Rizki, and M. R. A. Pratama, “Simulasi Deteksi Golongan Kendaraan pada Gerbang Tol Menggunakan YOLOv4,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 2, pp. 199–206, 2022, doi: 10.37859/coscitech.v3i2.3928.

J. Zhao et al., “Improved Vision-Based Vehicle Detection and Classification by Optimized YOLOv4,” IEEE Access, vol. 10, no. i, pp. 8590–8603, 2022, doi: 10.1109/ACCESS.2022.3143365.

M. I. HermaTelkomwan et al., “Kendaraan Menggunakan Metode Yolo Traffic Light Control Based on Vehicle Density Using the Yolo,” vol. 8, no. 1, pp. 198–205, 2021.

Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, “Real-Time Vehicle Detection Based on Improved YOLO v5,” Sustain., vol. 14, no. 19, 2022, doi: 10.3390/su141912274.




DOI: http://dx.doi.org/10.20527/klik.v11i1.625

Copyright (c) 2024 KLIK - KUMPULAN JURNAL ILMU KOMPUTER

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed by:

  
 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.joomla
counter View My Stats