ANALISIS KUANTITATIF PORI BERDASARKAN PENGOLAHAN CITRA MENGGUNAKAN WOLFRAM MATHEMATICA

Yuant Tiandho

Abstract


Currently, a porous material has been extensively developed in many areas of applied science and engineering. The characteristics of porous material is most often determined by its porosity. In this paper, we present a quantitative analysis of pores in a material according to image processing methods. An micrograph from electron microscopy (SEM) was analyzed by using Wolfram Mathematica. From our study can be obtained some informations about pore percentage (porosity), pore size,  ratio aspect, and distribution of pore size in the materials.

Keywords: pore, image processing, Wolfram Mathematica


Saat ini, material berpori telah dikembangkan secara luas di banyak bidang sains terapan dan teknik. Karakteristik dari material berpori seringkali ditentukan oleh porositasnya. Dalam makalah ini, kami menyajikan menyajikan analisis pori dalam suatu material berdasarkan metode pengolahan citra. Suatu mikrograf dari mikroskopi elektron (SEM) kami analisis dengan menggunakan Wolfram Mathematica. Dari penelitian kami dapat diperoleh beberapa informasi tentang persentase pori (porositas), ukuran pori, aspek rasio, dan distribusi ukuran pori dalam material.

Kata kunci: pori, pengolahan citra, Wolfram Mathematica


Full Text:

PDF

References


J. Escoto, Y. Chiang, K. Wu and Y. Yamauchi, "Recent progress in mesoporus titania materials: adjusting morphology for innovative applications," Science and Technology of Advanced Materials, vol. 13, pp. 013003(1) - (9), 2012.

Y. Wu, C. Li, H. Liang, J. Chen and S. Yu, "Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose," Angewandte Chemie, vol. 125, pp. 2997-3001, 2013.

X. Yao, Y. Hu, A. Grinthal, T. Wong, L. Mahadevan and J. Aizenberg, "Adaptive fluid-infused porous films with tunable transparency and wettability," Nature Materials, vol. 12, pp. 529-534, 2013.

F. Afriani, K. Dahlan, S. Nikmatin, and O. Zuas, "Alginate affecting the characteristics of porous beta-TCP/alginate composite scaffolds," Journal of Optoelectronics and Biomedical Materials, vol. 7, no. 3, pp. 67-76, 2015.

C. Parlett, P. Wilson and A. Lee, "Hierarchical porous materials: catalytic applications," Chemical Society Reviews, vol. 42, pp. 3876-3898, 2013.

L. Li, B. Li, L. Wu, X. Zhao and J. Zhang, "Magnetic, superhydrophobic and durable silicone sponges and their application in removal of organic pollutants from water," Chemical Communications, vol. 50, pp. 7831-7833, 2014.

L. Chen, X. Zhang, H. Liang, M. Kong, Q. Guang, P. Chen, Z. Wu and S. Yu, "Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors," ACS Nano, vol. 6, no. 8, pp. 7092-7102, 2012.

E. Ringgaard, F. Lautzenhiser, L. Bierregaard, T. Zawada and E. Molz, "Development of porous piezoceramics for medical and sensor applications," Materials, vol. 8, no. 12, pp. 8877-8889, 2015.

J. Feng, R. Zhang, L. Gong, Y. Li, W. Cao and X. Cheng, "Development of porous fly ash-based geopolymer with low thermal conductivity," Materials & Design, vol. 65, pp. 529-533, 2015.

R. Ferraro and A. Nanni, "Effect of-white rica husk ash in strength, porosity, conductivity, and corrosion resistance of white concrete," Construction and Building Materials, vol. 31, pp. 220-225, 2012.

P. Goodman, H. Li, Y. Gao, Y. Lu, J. Stenger-Smith and J. Redepenning, "Preparation and characterization of high surface area, high porosity carbon monoliths from pyrolyzed bovine bone and their performance as supercapacitor electrodes," Carbon, vol. 55, pp. 291-298, 2013.

A. Moradi, S. Pramanik, F. Ataollahi, T. Kamarul and B. Murphy, "Archimedes revisited: computer assisted micro-volumetric modification of the liquid displacement method for porosity measurement of highly porous light materials," Analytical Methods, vol. 6, pp. 4396-4401, 2014.

P. Elia, E. Nativ-Roth, Y. Zeiri and Z. Porat, "Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs," Microporous and Mesoporous Materials, vol. 225, pp. 465-471, 2016.

H. Du, J. Shin and S. Lee, "Study on porosity of plasma-sprayed coatings by digital image analysis method," Journal of Thermal Spray Technology, vol. 14, no. 4, pp. 453-461, 2005.

M. Ardisasmita, "Pengolahan citra digital dan analisis kuantitatif dalam karakterisasi citra mikroskopik," J. Mikroskopi dan Mikroanalisis, vol. 3, no. 1, pp. 25-29, 2000.

S. Wolfram, The Mathematica Book (5th ed.), USA: Wolfram Media, 2003.

S. McCaslin and A. Kesireddy, "Metallographic image processing tools using mathematica manipulate," in Innovations and Advances in Computing, Informatics, System Sciences, Networking and Engineering, Switzerland, Springer International Publishing, 2015, pp. 357-363.

R. Tseng and S. Tseng, "Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob," Journal of Colloid and Interface Science, vol. 287, pp. 428-437, 2005.

Z. Zhong, Y. Yin, B. Gates and Y. Xia, "Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polysterene beads," Advanced Materials, vol. 12, no. 3, pp. 206-209, 2000.




DOI: http://dx.doi.org/10.20527/klik.v4i1.65

Copyright (c) 2017 KLIK - KUMPULAN JURNAL ILMU KOMPUTER

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed by:

  
 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.joomla
counter View My Stats