Analisis Sentimen Warganet terhadap Isu Layanan Transportasi Online Berbasis InSet Lexicon menggunakan Logistic Regression
Abstract
Full Text:
PDFReferences
Republika, “Istri Founder Grab Diduga Pro Israel, Muncul Tren Uninstall Grab di Indonesia,” Nov. . [Online]. Available: https://ameera.republika.co.id/berita/s3rglb425/istri-founder-grab-diduga-pro-israel-muncul-tren-uninstall-grab-di-indonesia-dan-malaysia
Y. Azhar, “Metode Lexicon-Learning Based Untuk Identifikasi Tweet Opini Berbahasa Indonesia,” J. Nas. Pendidik. Tek. Inform., vol. 6, no. 3, p. 237, 2018, doi: 10.23887/janapati.v6i3.11739.
R. Firdaus, I. Asror, and A. Herdiani, “Lexicon-Based Sentiment Analysis of Indonesian Language Student Feedback Evaluation,” Ind. J. Comput., vol. 6, no. 1, pp. 1–12, 2021, doi: 10.34818/indojc.2021.6.1.408.
I. F. N. Fadhillah, A. Herdiani, and W. Astuti, “Analisis Sentimen Berbasis Leksikon InSet Terhadap Partai Politik Peserta Pemilu 2019 Pada Media Sosial Twitter,” e-Proceeding Eng., vol. 6, no. 3, pp. 1–11, 2019.
D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 24–33, 2021, doi: 10.57152/malcom.v1i1.20.
F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, vol. 2018-Janua, pp. 391–394, 2017, doi: 10.1109/IALP.2017.8300625.
S. Dara et al., “A Sentiment Analysis of Food Review using Logistic Regression,” vol. 2, no. 7, pp. 251–260, 2017, [Online]. Available: https://www.researchgate.net/publication/334654833
V. Christanti Mawardi and E. Darmaja, “Logistic Regression Method for Sentiment Analysis Application on Google Playstore,” Int. J. Appl. Sci. Technol. Eng., vol. 1, no. 1, pp. 241–247, 2023, doi: 10.24912/ijaste.v1.i1.241-247.
A. Poornima and K. S. Priya, “A Comparative Sentiment Analysis of Sentence Embedding Using Machine Learning Techniques,” 2020 6th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2020, pp. 493–496, 2020, doi: 10.1109/ICACCS48705.2020.9074312.
A. De Caigny, K. Coussement, and K. W. De Bock, “A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees,” Eur. J. Oper. Res., vol. 269, no. 2, pp. 760–772, 2018, doi: 10.1016/j.ejor.2018.02.009.
P. Lauren, G. Qu, J. Yang, P. Watta, G. Bin Huang, and A. Lendasse, “Generating Word Embeddings from an Extreme Learning Machine for Sentiment Analysis and Sequence Labeling Tasks,” Cognit. Comput., vol. 10, no. 4, pp. 625–638, 2018, doi: 10.1007/s12559-018-9548-y.
DOI: http://dx.doi.org/10.20527/klik.v11i1.655
Copyright (c) 2024 KLIK - KUMPULAN JURNAL ILMU KOMPUTER
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License. View My Stats