IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK (ANN) USING BACKPROPAGATION ALGORITHM BY COMPARING FOUR ACTIVATION FUNCTIONS IN PREDICTING GOLD PRICES

Dian Kurniasari, Ranti Vidia Mahyunis, Warsono Warsono, Aang Nuryaman

Abstract


The trend in global currency values is speedy and fluctuating due to the recession caused by the Covid-19 pandemic. That causes investors to flock to buy gold assets. Therefore, it is necessary to predict the price of gold from a business and academic perspective to obtain a reasonable gold price prediction model. This study applies the Backpropagation Algorithm by determining the best ANN model structure based on four activation functions: Sigmoid, Tanh, ReLU, and Linear, as well as learning rate values, namely 0.01 and 0.001. The results are the best ANN model structure with four nodes in the input layer, four nodes in the hidden layer and the output layer using the Linear activation function and a learning rate of 0.01. Based on the structure of the model, the MSE value is 0.00051, the MAPE value is 1.9798%, and the accuracy is 98%.

Keywords: Artificial Neural Network, Backpropagation, Gold Price Prediction, Activation Function, Model Structure 

Trend nilai mata uang global sangat cepat dan fluktuatif akibat terjadinya resesi yang disebabkan oleh pandemi Covid-19. Hal ini menyebabkan, para investor berbondong-bondong untuk membeli aset emas. Oleh sebab itu, perlu dilakukan prediksi harga emas, baik dari perspektif bisnis maupun akademis agar memperoleh model prediksi harga emas yang baik. Penelitian ini menerapkan Algoritma Backpropagation dengan menentukan struktur model ANN terbaik berdasarkan empat fungsi aktivasi yaitu, Sigmoid, Tanh, ReLU, dan Linear serta nilai learning rate, yaitu 0,01 dan 0,001. Hasil yang diperoleh berupa struktur model ANN terbaik dengan empat node pada input layer, empat node pada hidden layer dan output layer dengan menggunakan fungsi aktivasi Linear dan learning rate sebesar 0,01. Berdasarkan struktur model tersebut, diperoleh nilai MSE sebesar 0.00051, nilai MAPE sebesar 1,9798% dan akurasi sebesar 98%.

Kata Kunci: Artificial Neural Network, Backpropagation, Prediksi Harga Emas, Fungsi Aktivasi, Struktur Model


Full Text:

PDF

References


S. Patalay and M. R. Bandlamudi, "Gold Price Prediction Using Machine Learning Model Trees," in International Conference on Changing Business Paradigm(ICCBP), Murshidabad, 2021.

S. Makridakis, S. C. Wheelwright and V. E. McGee, Metode dan Aplikasi Peramalan, Edisi ke-2, Jakarta: Erlangga, 1999.

L. V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and Applications, New Jersey: Prentice-Hall, 1994.

S. P. Siregar and A. Wanto, "Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting)," International Journal Of Information System & Technology, vol. 1, no. 1, pp. 34-42, 2017.

Y. A. Lesnussa, C. G. Mustamu, F. K. Lembang and M. W. Talakua, "Application Of Backpropagation Neural Networks In Predicting Rainfall Data In Ambon City," International Journal Of Artificial Intelegence Research, vol. 2, no. 2, 2018.

D. Puspitanigrum, Pengantar Jaringan Syaraf Tiruan, Yogyakarta: Andi, 2006.

K. T. N. Lestari, M. A. Albar and R. Afwani, "Application of the Backpropagation Method in Predicting the Number of Tourist Visits to Nusa Tenggara Barat Province," Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 3, no. 1, pp. 39-48, 2019.

A. B. Bayu, "Prediksi Harga Saham Dengan Menggunakan Jaringan Syaraf Tiruan," Jurnal Teknologi Informatika dan Komputer MH Thamrin, vol. 6, no. 2, pp. 103-111, 2020.

N. Nafi'iyah, "Perbandingan Regresi Linear, Backpropagation, dan Fuzzy Mamdani dalam Prediksi Harga Emas," in Seminar Nasional Inovasi dan Aplikasi Teknologi Industri (SENIATI), Malang, 2016.

J. Han, M. Kamber and J. Pei, Data Mining: Concept and Techniques, 3rd Edition, Waltham: Morgan Kaufmann Publishers, 2012.

E. Turban, J. E. Aronson and T.-P. Liang, Decision Support System and Intelligent Systems, 7th Edition, Prentice Hall, 2004.

B. Santosa, Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis, Graha Ilmu, 2007.

M. Ayub, "Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer," Jurnal Sistem Informasi, vol. 2, no. 1, pp. 21-30, 2007.

T. Masayuki and M. Okutomi, "A Novel Inference of a Restricted Boltzmann Machine," in 2014 22nd International Conference on Pattern Recognition (ICPR), Tokyo, 2014.

J. Heaton, Introduction to Neural Networks with Java, 2nd Edition, Heaton Research, Inc., 2008.

Y. Lu, "Deep Neural Networks and Fraud Detection," U.U.D.M. Project Report 2017, Sweden, 2017.

D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in Proceeding Conference Paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

S. Sena, "Pengenalan Deep Learning Part 1: Neural Network," 19 Maret 2018.

A. D. Erna, Pengantar Jaringan Syaraf Tiruan, Wonosobo: Star Publishing, 2009.

F. Pakaja, A. Naba and P. Purwanto, "Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor," Jurnal EECCIS, vol. 6, no. 1, pp. 23-28, 2012.




DOI: http://dx.doi.org/10.20527/klik.v10i1.587

Copyright (c) 2023 KLIK - KUMPULAN JURNAL ILMU KOMPUTER

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed by:

  
 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.joomla
counter View My Stats